Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers.

نویسندگان

  • L Rongy
  • A De Wit
چکیده

Spatial variations of concentrations and temperature across exothermic chemical fronts can initiate buoyancy-driven convection. We investigate here theoretically the spatiotemporal dynamics arising from such a coupling between exothermic autocatalytic reactions, diffusion, and buoyancy-driven flows when an exothermic autocatalytic front travels perpendicularly to the gravity field in a thin solution layer. To do so, we numerically integrate the incompressible Stokes equations coupled to evolution equations for the concentration of the autocatalytic product and temperature through buoyancy terms proportional to, respectively, a solutal R(C) and a thermal R(T) Rayleigh number. We show that exothermic fronts can exhibit new types of dynamics in the presence of convection with regard to the isothermal system. In the cooperative case (R(C) and R(T) are of the same sign), the dynamics asymptotes to one vortex surrounding, deforming, and accelerating the front much like in the isothermal case. However, persistent local stratification of heavy zones over light ones can be observed at the rear of the front when the Lewis number Le (ratio of thermal diffusivity over molecular diffusion) is nonzero. When the solutal and thermal effects are antagonistic (R(C) and R(T) of opposite sign), temporal oscillations of the concentration, temperature, and velocity fields can, in some cases, be observed in a reference frame moving with the front. The various dynamical regimes are discussed as a function of R(C), R(T), and Le.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally.

The spatiotemporal dynamics of vertical autocatalytic fronts traveling horizontally in thin solution layers closed to the air can be influenced by buoyancy-driven convection induced by density gradients across the front. We perform here a combined experimental and theoretical study of the competition between solutal and thermal effects on such convection. Experimentally, we focus on the antagon...

متن کامل

Convective dynamics of traveling autocatalytic fronts in a modulated gravity field.

When traveling in thin solution layers, autocatalytic chemical fronts may be deformed and accelerated by convective currents that develop because of density and surface tension gradients related to concentration and thermal gradients across the front. On earth, both buoyancy and Marangoni related flows can act in solution layers open to the air while only buoyancy effects operate in covered liq...

متن کامل

Convective instabilities of chemical fronts in close-packed porous media

Spatiotemporal pattern formation in the autocatalytic chlorite–tetrathionate reaction is studied experimentally in porous media where heterogeneities are introduced as glass beads packed in a monolayer. From initially vertical planar chemical fronts in a vertical slab, asymmetric convective structures with stable geometry evolve which propagate horizontally with constant speed. The single conve...

متن کامل

Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations.

The nonlinear dynamics resulting from the interplay between diffusive and buoyancy-driven Rayleigh-Taylor (RT) instabilities of autocatalytic traveling fronts are analyzed numerically for fronts ascending or descending in the gravity field and for various values of the relevant parameters, the Rayleigh numbers R(a) and R(b) of the reactant A and autocatalytic product B, respectively, and the ra...

متن کامل

The heads and tails of buoyant autocatalytic balls.

Buoyancy produced by autocatalytic reaction fronts can produce fluid flows that advect the front position, giving rise to interesting feedback between chemical and hydrodynamic effects. In this paper, we numerically investigate the evolution of autocatalytic iodate-arsenous acid reaction fronts initialized in spherical configurations. Deformation of these "autocatalytic balls" is driven by buoy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 131 18  شماره 

صفحات  -

تاریخ انتشار 2009